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Abstract —This paper documents near-autonomous negotiation of
synthetic and natural climbing terrain by a rugged legged robot,
achieved through sequential composition of appropriate perceptu-
ally triggered locomotion primitives. The first, simple composition
achieves autonomous uphill climbs in unstructured outdoor terrain
while avoiding surrounding obstacles such as trees and bushes. The
second, slightly more complex composition achieves autonomous
stairwell climbing in a variety of different buildings. In both cases, the
intrinsic motor competence of the legged platform requires only small
amounts of sensory information to yield near-complete autonomy.
Both of these behaviors were developed using X-RHex, a new
revision of RHex that is a laboratory on legs, allowing a style of
rapid development of sensorimotor tasks with a convenience near
to that of conducting experiments on a lab bench. Applications of
this work include urban search and rescue as well as reconnaissance
operations in which robust yet simple-to-implement autonomy allows
a robot access to difficult environments with little burden to a human
operator.

Keywords: autonomous robot, hill climbing, stair climbing,

sequential composition, hexapod, self-manipulation

I. INTRODUCTION

We present two applications of guarded autonomy for a

legged robot, allowing a perceptually and algorithmically

simple platform to negotiate non-trivial indoor and outdoor

environments thanks to its well designed preflex and feedback

mediated controls. The term preflex [1] denotes a purely

mechanical loop arising from the interaction of a designed,

shaped body or compliant limb with some naturally occurring

geometric and mechanical features of the robot’s environment.

The feedback policies we use all approach the ideal (and in

many cases represent a formal instantiation) of an attractor-

basin selected by some state-based switching logic implement-

ing the “prepares” relation according to the sequential compo-

sition method proposed in [2]. Thus, the phrase algorithmically

simple refers to our robot’s sole reliance on hybrid composition

of online controllers to achieve guarded autonomy.

We focus on two scenarios generally acknowledged to

hold great importance yet still pose considerable difficulty

for existing man-portable mobile robots: the autonomous

climbing of cluttered, forested hillsides [3] (Figure 1); and

multi-flight stairwells in indoor settings [4] (Figure 2). In

each scenario, we posit a very simple, deterministic world

model and an equally simple deterministic perceptual model,

along with a family of feedback controllers selected using (a

sometimes slightly relaxed form of) sequential composition

[2] in a manner that seems intuitively sufficient to achieve the

specified navigation task. We justify that intuition by reporting

Fig. 1: The X-RHex robot on a forested hill.

extensive experimental results. Motivated by that empirical

success, future versions of this work will focus with greater

analytical precision on the relationships between the formal

task representation, world model, algorithmic correctness and

the perceptual endowment required to support it.

This new advance of guarded autonomy represents an

appropriate debut for our re-engineered version of the RHex

[5] platform, X-RHex [6], whose slightly greater power density

and significantly more flexible sensor interface and software

API enable this physical implementation of the commanded

behavior that would not likely be possible for its predecessor.

A. Motivation

For urban search and rescue (USAR) and intelligence,

surveillance, reconnaissance (ISR) operations, the ability of

a robot to autonomously navigate both indoor and outdoor

environments provides great utility to remote operators [7]. As

a typical application of our first task, autonomous ascent of a

forested hillside, a robot might climb a hill to reach potential

vantage points or to act as a radio relay antenna, potentially

important for ISR operations as the behavior does not rely

upon GPS signals. This work was motivated by preliminary

tests of such a mission in the Mojave desert revealing that with

relatively simple gradient-style control (see Section III-A.1)

the robot climbed to the top of a small rocky hill (Fig-

ure 7). The robot encountered infrequent entrapments in the

“shadow” of insurmountable but potentially easily avoidable

big obstacles, thereby suggesting the need for the slightly

more advanced autonomy presented in this paper. As a typical

application of our second task, autonomous stairwell ascent,



a robot endowed with this capability could reach otherwise

inaccessible portions of an abandoned or damaged building

environment. In both settings automating the robot’s mobility

to the extent of removing the detailed challenges of the local

terrain from the burden on human attention (as well as on the

communications channel bandwidth) further promotes its use

in communications-denied or -limited environments [8].

B. Contributions

To the best of our knowledge, no previous authors have

documented the completely autonomous ascent of natu-

rally wooded or rocky hillsides, nor of general multi-floor

stairwells—much less achieving both tasks with the same

robot platform. The primary contribution of this paper is our

partial success in doing so on a variety of terrains (and building

interior styles), documented in the data tables of Section IV.

Past work in hill climbing has reported either simulation

results only [9] or achieved success only through recourse to

detailed terrain labeling and mapping so as to preclude failure

by entrapment from minor obstacles [3, 10]. Prior work on

general autonomous stairwell negotiation also has been largely

focused on simulation studies [11], with almost all empirical

work confined to the traversal of a single flight and yaw control

on the stairs (summarized in [4]). The only prior report we

have found documenting empirical work over multiple flights

of stairs assumed a very specific, simple landing geometry

[12]; we intentionally target a great diversity.

More broadly, we believe this work makes a secondary

contribution to the literature by exploring the benefit of a

greatly abstracted world model (and the greatly simplified

perception required to support it) when a simple task is

assigned to a mechanically competent platform. Navigation

behaviors have been dominated over the last decade by in-

terest in learning [13, 14] and, more specifically, applications

of Bayesian map-building [15]. Even in their more relaxed

topological representations [16], such methods are committed

to repeated measurements as a necessary means of discovery,

even when used on legged platforms [11]. However, the dy-

namics of locomotion inherent to dexterous machines such as

the legged robot used in this work complicate considerably the

task of accurately estimating state or building a world model

[17, 18]. Here, contrarily, given the very much more narrow

requirements of the task at hand, we are able to presume

a priori knowledge of a “perfect” model (Section II-B). Its

accuracy of course derives from its utter simplicity, inviting

in turn very simple sensors. The gross discrepancies of this

model with respect to the real geometry and mechanics of

the environment are successfully abstracted by the mechanical

preflexes of the platform.

II. ROBOT AND TASK

A. The Robot

1) X-RHex, A Laboratory on Legs: In this section we

introduce the new experimental platform used in this paper,

X-RHex [6]. Shown in Figures 1 and 2, X-RHex has about

the the same footprint and weight as Research RHex [5], but

only half the body height. Its motors are 2.5 times stronger,

Fig. 2: The X-RHex robot on a set of stairs with laser scanner,

IMU, wireless repeater, and handle payloads.

making them useful for both climbing hills and stairs. The

robot can slot-load up to two batteries, each of which lasts

roughly 1.5 times the original RHex battery, enabling longer

experimental runs. A full report on the platform and a detailed

comparison to past RHex robots can be found in [6].

One significant advantage of the new platform, and a design

extension beyond prior RHex platforms, is the introduction

of a payload system on the top of the robot, the space for

which is afforded by the robot’s thinner profile. The system

consists of a standardized mechanical mount, and a set of

electrical connectors to interface the payloads with on-board

electronics. With swappable payloads, the robot functions as

a laboratory on legs and supports an open-ended variety of

experiment-specific sensory and computational payloads. In

these experiments we use a laser scanner1 and IMU2, as well

as an additional wireless communications payload and a pair

of carry handles.

A second major advance over prior RHex platforms is the

new “Dynamism” [6] development environment, providing a

lightweight interface to store and retrieve data, either from

other functions or processes on the robot or from other

computers on the network. For example, the locomotion prim-

itives we use in these experiments are all coded in compiled

executables on the robot, whereas the sensor-based behaviors

developed in this paper have been coded in a scripting lan-

guage (Python or MATLAB) on a laptop client for simplicity.

While all these behaviors could be coded directly on the robot,

the use of this network abstraction layer has greatly sped

up behavior development, though occasional network glitches

caused some problems in the experiments (as we document

below).

2) Abstract Robot Model: For purposes of task specification

and modeling, we assume the robot’s standard gait (alternating

tripod [5]) over the standard terrain encountered (as modeled in

the next section) reduces to the target dynamics (or “template”

1Hokuyo URG-04LX-F01, http://www.hokuyo-aut.jp/, an indoor
unit that was used outdoors but not in direct sunlight.

2Microstrain 3DM-GX2, http://www.microstrain.com/
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Fig. 3: Position tracks of several runs up the same hill with

and without automatic uphill steering (blue solid and red

dashed lines, respectively), with various starting angle. Uphill

is positive Y direction (North), axis are in meters.

[19]) of a horizontal plane kinematic unicycle [20],

ẋ = vsin(θ) (1)

ẏ = vcos(θ) (2)

θ̇ = s (3)

controlled by a velocity (v) and steering (s) command. Phys-

ically, when RHex climbs at an angle to an uphill direction,

gravity will naturally yaw the robot downhill. This can be seen

in the red curves of Figure 3, which show a number of trials

of the robot walking on a hill from various initial headings

and no steering command (s = 0). These data suggest a more

realistic model for heading dynamics would take the form

θ̇ = s+ δsin(α)sin(φ) (4)

where φ is the local vertical slope and α is the yaw angle of

the robot’s heading relative to the direction of the slope3.

B. The World Model

We now introduce the very simple “grade” model of a

terrain that will abstract away almost all the physical properties

of the hills and stairs to provide a uniform view of the

robot’s task within its environment. This abstraction is only

appropriate on a platform such as RHex whose normal walking

gait can safely handle small obstacles (rocks, twigs, etc).
1) The Grade Terrain Model: A terrain is specified by

some (unknown) height function, η ∈ C∞
[
R

2,R
]
. Not

only is η unknown, but we assume it is not a metrically

full scale accurate copy of the literal terrain, rather to be

imagined as sufficiently “smoothed” and thus absent of spatial

frequencies much below the robot’s bodylength. Its (also

unknown) gradient,

Dη(x) = γ(x) · D̂η(x); γ(x) := ‖Dη(x)‖, (5)

we write in polar form as the product of the grade, γ, and
steepest ascent unit field, D̂η. The set of obstacles is given

by excessively steep grades

O :=
{
x ∈ R

2 : γ(x) ≥ G0

}
,

3 We ascribe these effective yaw perturbation forces to the overall conse-
quences of the “downhill” legs taking more of the robot’s weight and thus
lagging behind the “uphill” legs. In particular, note that the magnitude of the
effect gets worse the farther the robot turns (modeled by the sin(α) term).

where G0 is a lower bound on the grades above which the

alternating tripod gait will not successfully propel the machine

in a manner well modeled by the unicycle plant introduced

above in equations (1)-(4).

We conjecture (but do not attempt to rigorously establish

in this paper) that the sequential composition methods to be

introduced in the next section can be proven correct under the

assumption that the terrain is “simple”: i.e., that the obstacle

set of excessively high grades comprises a disjoint union of

“suitably” separated (defined as a gap wide enough to fit

through a proximity-distance-sensor thickened disk containing

the robot’s horizontal plane body) convex compact shapes.

Under these circumstances, the obstacle-free planar surface

on which the robot navigates is a topological sphere world in

the sense of [21]. We assume throughout the rest of this paper

that the actual terrain has this property (and report only on the

empirical aspects of the resulting implementation).

2) Hill and Stair Models and Climbing Tasks: A hill

is any simple terrain. We define the hill climbing task as

requiring that the robot locomote from any initial position and

orientation to some local maximum of the height function η.
In contrast, we define a stairwell to be a piecewise constant

terrain (each constant component called a landing) with obsta-

cle boundaries (walls, cliffs) including a distinguished subset

called a stair that connects the landings. We will define a stair

purely in terms of its perceptual features as detailed below in

Section II-C.6. Unlike other “excessively steep” terrain, a stair

can be ascended by recourse to a different gait (described in

Section III-B). The stairwell climbing task requires that the

robot locomote from any initial position and orientation in a

stairwell to some landing with no (upward) “stair” boundaries.

C. Sensor Models

In this section we posit a simple set of abstract sensor

models and briefly relate how they are realized (of course,

actually, merely approximated) in our physical hardware. First,

we introduce a vestibular sensor relying only on a conventional

IMU output, and then a succession of exteroceptive sensors

that can be realized through use of a LIDAR hardware unit

mounted on a legged robot.

1) Gravitational Gradient Sensor: Given the orientation

of a robot’s body from an IMU (in terms of a coordinate

system x, y, and z), the calculation of the instantaneous uphill

direction is similar to computations proposed in the prior

stairwell experiments [12]. We compute the rotation α about

z between x and D̂η, given the direction of gravity, g, as

follows

α := arccos(x · [(g × z)× z]) (6)

2) Excessive Grade Sensor: The excessive grade sensor is

an abstract depth map,

σE : R2 × S
1 × [−P, P ]× [−A,A] → [0, R]

that returns from each position and orientation in the plane,

(x, y, θ) ∈ R
2 × S

1, body pitch, ψ ∈ [−P, P ], and view

direction, λ ∈ [−A,A], a distance, ρ ∈ [0, R], to the nearest

excessive grade. In our implementation, we use the output



Fig. 4: The pitch wiggle behavior, with middle legs removed

for clarity.

from a fixed LIDAR unit to realize this depth map. The

arc extends roughly ±A (where A = 120◦) off center. The

distance profile corresponds to the first depth at which the

LIDAR unit records a return. For the chosen fixed placement of

this unit, our robot will interpret as an obstacle anything (tree,

rock, slope increase, wall) that rises more than 25cm over a 1m

run above the existing slope — hence, abstractly, this sensor

is indeed responding to an excessively steep grade, γ > G0,

corresponding to the terrain model above. The LIDAR unit

cannot “see” beyond a distance of R := 4m, to which the

“infinite” reading of its maximum depth scale is calibrated.

The laser scanner plane is at a height such that any obstacle

that it cannot see is assumed to be surmountable and any

obstacle that it can see is assumed to be insurmountable.

3) Gap Sensor : The gap sensor is an abstract map,

σG : R2 × S
1 → [−A,A]

that returns for each position and orientation at which the robot

is pointing, the center, σG(x, y, θ) = ξ of an arc segment

[ξ−S, ξ+S] ⊂ [−A,A], a “window” within which the interval

depth is maximized

ξ := argmax
τ∈[−A+S,A−S]

I[τ, S]

where the “minimum interval depth” is taken to be

IM [α, β] := min
α−β<λ<α+β

σE(x, y, θ, 0, λ)

resulting in the sensor σGM
(to be used in the hill climbing

application) whereas the “weighted mean” depth is taken to

be a distorted mean

IW [α, β] := min
α−β<λ<α+β

σE(x, y, θ, 0, λ)

(1−K)cos6(λ− α) +K

resulting in the sensor σGW
(to be used in the stairwell

climbing application).

4) Plane Sensor: The plane sensor, σP is defined as,

σP (x, y, θ) := {(ρ, λ, ψ) : ρ = σE(x, y, θ, ψ, λ)}

and is implemented by running an excessive grade sensor

at each pitch angle achieved via the “pitch wiggle” self-

manipulation.

The pitch wiggle is a sensorimotor routine which uses the

planar LIDAR to measure ranges in many planes. With a

LIDAR unit such as this positioned horizontally with respect

to the ground, a staircase for example will appear similar to

a wall. Unlike many robots that attach a LIDAR unit to a

motorized tilting mechanism, we use RHex’s natural ability

to self-manipulate to a variety of angles in order to sweep

the LIDAR’s sensing plane. This maneuver produces a large

variation in body pitch (either up or down) with minimal

internal forces or toe slip4, and is depicted in Figure 4. A

more precise treatment of robot self manipulation RHex will

be presented in an upcoming paper [22].

5) Cliff Sensor: The cliff sensor, σC , is a simple threshold

on the ranges returned from the pitch wiggle, σP < C, where
σP is pitched downward and C is a calibrated range verifying

that the ground is where we expect it to be.

6) Stair Sensor: The stair sensor σS is the composition

σF ◦ σP , where σP is pitched around an upward center and

σF tries to find the most “stepped” direction5. Note that

this stairwell detector relies on the assumption that all walls

and obstacles are infinitely high, that is there are no other

“stepped” features on the landings.

III. DESCRIPTION OF AUTONOMOUS BEHAVIORS

A. Autonomous Hill Climbing

1) Steepest Ascent Controller: For this controller, the fore-

aft velocity command is set to a grade-selected constant

v := v0χ(γ/G0), (7)

where χ ∈ C∞[0, 1] fixes 0, i.e., χ(0) = 0, so that locomotion

ceases when the grade is level6. The key task of uphill gradient

following is achieved by introducing a servo term7

s := ksα, (8)

where α is the angular in heading difference from steepest

ascent (see equation (6)). Assuming that ks > δ sinφ, this
stabilizes the robot’s heading angle around the true steepest

ascent direction. The solid blue lines in Figure 3 record

experiments using the robot with this controller, on the same

hill as before, with a wide variety of initial angles (including

one facing directly downhill) forced successfully toward the

heading of steepest ascent8.

It is intuitively clear (but, adhering to the intended informal

scope of the present paper, we will not rigorously prove)

that this controller yields a closed loop system when applied

to the unicycle plant model, equations (1)-(4), respecting

which the terrain height, η, represents a LaSalle function

4This pitch change can be easily derived from the geometry of the C-shaped
legs.

5The details of σF are not important, but it is basically a well filtered
edge detector that is tuned to be sensitive to the magnitudes and frequencies
of typical stairwells as seen by a laser scanner sweeping through a range of
pitches. Importantly, we have set these parameters once and for all, and they
remain invariant throughout all the different stairwells of Table II.

6The leg offset parameter of the gait is also automatically modified as the
robot runs to match the grade as in [23].

7Here and elsewhere in this paper s is filtered to smooth out noise and
prevent a large instantaneous change in steering command, which also gives
these controllers some effective (and pragmatically welcome) hysteresis.

8In general, servoing on a direction other than steepest ascent would
require additive feedforward cancellation of the yaw perturbation effect. While
estimates of φ, the pitch, can be readily achieved for this, the effective
yaw perturbation gain, δ, varies significantly across terrain types so that
some online identification or adaptive control technique would be required
to achieve reliable performance.



Fig. 5: A cylindrical projection of a patch of the world model

with controller superimposed for the hill steering behavior.

[24]. Consequently, the resulting attracting set consists of

the maxima of η together with the subset of the obstacle

boundary whose tangent space is exactly normal to the heading

direction. In other words, the robot will keep climbing along

the direction of steepest ascent until it has either halted at

a local maximum or has “crashed into” an obstacle defined

by the excessive grade condition, γ ≥ G0. The basins of

attraction around each of these components of the forward

limit set are typically complicated open regions in the set

of position and heading initial conditions determined by the

precise details of the terrain, η. Of course, the central point of
this paper is that the robot does not need to know nor learn

anything about them. It is sufficient to know that this gradient

ascent controller creates a multi-stable family of attractors,

some of which correspond to the completion of the climbing

task, while others, the “obstacle crash encounters,” represent

undesired events we will now place in sequential composition

with avoidance controllers.

2) Obstacle Avoidance Controller: We can replace the con-

troller of equation (8) with a “gap seeking” steering command,

s := ksσGM
(x, y, θ), (9)

and then use the assumption that obstacles are convex to

guarantee that σGM
must eventually return to 0◦ at which point

the “prepares” relation is triggered again (i.e. the machine

is in a new steepest ascent basin) and the uphill steering

behavior takes over. Note as another consequence of the

obstacle convexity assumption that this obstacle avoidance

behavior will still make progress in terms of our LaSalle

function, η, since the robot will never turn downhill.

3) Combined Behavior: Figure 5 summarizes the behavior,

and shows a metrically deformed, topologically accurate ren-

dering in a θ ≡ 90◦ projected slice of the robot’s (x, y, θ)
space of the attractor-basin family arising from sequentially

composing the steepest ascent controller (equations 7 and 8)

and the obstacle avoidance controller (equation 9) in the face

of a hill, η. The black arrows depict the typical controller-

induced vector field. The top purple line represents a compo-

nent of the attracting terrain “goal” maxima. The red disks

represent excessive-grade obstacles and they each induce an

attracting “crash” maxima on their boundary. The pre-image

basin of the “goal” attractor is depicted in yellow while the

basin of the “crash” attractors is depicted in green. The domain

of the obstacle avoidance controller is represented in the blue-

dotted region located just proximal to the red obstacles.

B. Autonomous Stairwell Ascent

Because of the additional perceptual and motor activity

associated with finding and negotiating stairs, the autonomous

stairwell ascent behavior has greater complexity than the

hill climbing just presented. Although we again address the

overall task through the systematic construction of pre-image

backchaining [25], our reliance upon preflexes implies that

not all the action steps will admit well-defined attractors and

basins as required for the very robust and formally more

powerful variant of sequential composition [2]. We report here

on the presently functioning constituents of this behavior and

leave for future work their formal reconciliation into that more

powerful (but restrictive) framework.

1) The Stair Climbing Behavior: RHex robots have been

climbing single-flight stairs for for nearly a decade since

Buehler’s group first developed the appropriate gait [26] and

they perform quite reliably on a variety of typical human-

scale staircases. This capability owes much to the preflex

yaw stabilization conferred by in-phase contra-lateral legs

(providing a wide base of support on each successive stair)

along with the metachronal gait that engages the circular legs

just in time to place the body weight quasi-statically on the

tread of the stair. The preflexes arising from this gait ensure

that RHex-style legged platforms ascend stairs in open-loop

as if in the presence of the perceptually active steepest ascent

stabilizing controller (equation 8) on hills9.

When climbing a single-flight stairwell, we can consider

backchaining through a (still to be defined) fuller palette of

controllers in the spirit of [2]. Our goal set is the top of the

final flight of stairs. Thus we need one controller that can

direct the robot to that goal set from say just past the top step

of the final flight. This stair exit controller is simply a few

walking steps triggered by the robot body pitch (as done for

a different robot in [12]).

We have already described a controller that climbs the stairs

and has a preflex funnel from a domain of any individual step

(say the first one) to any higher step (such as the last step).

In order to enter the domain of the stair climbing controller,

the robot uses a transition from walking to stair climbing that

has also been shown to be reliable when the robot is walking

towards the start of a stairwell [28]10.

2) Landing Behavior: Now we have successfully

backchained a series of dynamical controllers that can

guarantee the robot can get from a lower landing in front of a

stairwell to the next landing just past the top of a stairwell. A

new sequence of controllers is needed to get the robot from

the goal set of one flight to the starting domain of the next.

9And, as it turns out, at least as reliably in this task open-loop mode as any
tracked robots under feedback control since the latter must place their weight
on the nose of the stair for each step [27], which is contrary to the way stairs
are intended to be used.

10Now using the virtual contact sensor of [29] instead of mere controller
error to trigger the same transition more reliably.



Fig. 6: Flow chart describing autonomous stair climbing.

First this controller uses the stair sensor σS (Section II-C.6),

and will perform an open-loop11 walk to the next stairs if

seen. If the robot is not sure that there is a staircase in view

it then moves on to explore the landing. The robot wills pick

a direction that is “most open” by using the gap sensor σG
(Section II-C.3). The robot then performs an open-loop walk in

that direction for about a meter and then stops to look for stairs

again. If no suitably open direction is found (if σE(σGW
) <

1m) the robot simply turns 90◦. In order to guarantee that

the robot will not fall off any cliffs (such as the down stairs

direction), the robot checks the cliff sensor σC (Section II-C.5)

to verify that there is navigable terrain in front of it.

This would be a very slow way to explore an entire building,

and there are no deterministic guarantees that the robot must

find the next flight of stairs. However given the fact that

landings are generally metrically small and not maze-like, this

controller will in reality find the subsequent stairwell with a

very high probability.

With this new “explore a landing” behavior the sequential

composition backchaining is completed and produces a cyclic

path through controllers until the robot reaches the top of a

stairwell. Figure 6 summarizes the entire behavior.

IV. EXPERIMENTAL RESULTS

A. Autonomous Hill Climbing

To test the autonomous hill climbing behavior, a dataset was

collected on eight different hills located in two nearby parks,

as summarized in Table I. Overall, the robot climbed almost

half a kilometer of hilly terrain while avoiding 42 obstacles

(21 trees, 10 bushes, 10 logs, 1 human) and hitting only 5

obstacles. In other words, the steepest ascent controller, with

no obstacle avoidance controller, would otherwise have hit and

likely become entrapped by an additional 42 obstacles that the

robot was able to avoid in these tests. Larger obstacles, such

as very wide trees or downed logs, took significant amounts

of time to follow around and the follow time for any obstacle

of at least 3s has been added up and reported.

Four of the eight hills had a relatively consistent grade,

and their hill slope is listed as an average value, while the

11In the current version, the open-loop walking parameters are floor material
specific. However this hand-crafted step could readily be eliminated in favor
of some form of terrain identification or visual servoing.

other hills were more uneven and their hill slope is listed as

a range. All of these latter runs encountered some terrain that

was nearly flat (hence, the robot, achieving a local maximum,

formally accomplished the task at hand in these instances),

however we disabled the summit detection to allow the robot

to possibly cross these intermediate plateaus so as to keep

accumulating climbing statistics. Runs 2 and 6 ended when

the robot reached such a plateau because the robot ended up

drifting in yaw back toward its initial placement. Trial 8 ended

in a summit and trial 4 ended when it reached the edge of the

park (an artificial boundary that violates the world model).

The other four trials were stopped when the robot incurred a

fault after the reported distance had been covered. Three trials

were stopped with either a flip (robot inverted when it hit a

low log) or a peg (robot stuck on a small but rigid branch),

and one trial was stopped due to the hill getting too steep. All

are failures in the assumption that any obstacle that the sensor

cannot see is surmountable (Section II-C.2), and could be fixed

with either better sensing or better locomotion primitives.

B. Autonomous Stairwell Ascent

To test the autonomous stairwell climbing behavior we

ran it on 10 of the many different stairwells in 4 nearby

buildings12, as Table II summarizes13. We distinguish behavior

faults (arising from inadequacies in either the algorithm or the

sensorimotor capabilities that subserve it) from robot faults

(failures due to mechanical or electronic unreliability). Only

four of the stairwells met the requirements of our world

model. Specifically, they exhibited solid, detectable walls and

no significant stepped features on the landings. These first

four runs listed yielded cumulatively only two behavioral

problems throughout the ascent of 103 steps accumulated over

15 flights. Both of these behavioral failures were incurred by

faults arising from a false negative in the cliff sensor.

The rest of the stairwells violated our world model as-

sumptions, but the robot was still able to climb with varying

degrees of success. Their most significant discrepancy was

their glass or mesh walls that the laser scanner can see through

but are actually obstacles to the robot, leading to either a

direct or indirect collision that in turn precipitated faults

requiring operator intervention. The mesh stairs (the robot’s

worst performance) as well as one stairwell with boxy heaters

both look very “stepped” (as described in Section II-C.6), and

lead to several stair faults — false positives in the stair sensor.

Other behavioral faults included problems in the transition

between walking in stair climbing, usually due to either bad

starting angle or premature transition.

In addition to behavioral faults, there were 17 robot faults

over all 61 flights. The majority of these arise from a leg

failing to respond or from a robot reset - both due to a known

12There were three additional stairwells that were attempted but on which
the robot made no progress due to their having either open risers or glossy
painted risers that the laser scanner could not see well if at all. This is a
limitation of the sensor and these stairwells are not reported.

13 Naturally every stairwell is unique, and even within a stairwell the
rise, run, width, steps per flight, landing size, style, and wall type can vary
significantly. Listed here are “typical” values for a given stairwell that attempt
to convey some of these differences without providing full blueprints.



# Description Direct Distance Hill Slope Runtime Obstacles Avoided Follow Time Faults Finish

1 Steep, Rocky Hill 14 m 17◦ 1:35 3 3 s Hill Fault
2 Medium Grassy A 26 m 0− 13◦ 1:23 1 4 s - Plateau
3 Steep, Sparse Forest 48 m 14◦ 3:26 2 0 s Peg Fault
4 Sparse Grassy A 51 m 0− 8◦ 4:54 2 0 s - Edge
5 Medium Forest A 57 m 11◦ 4:20 10 25 s Flip Fault
6 Medium Grassy B 62 m 0− 8◦ 5:42 7 4 s - Plateau
7 Medium Forest B 69 m 9◦ 4:37 15 13 s Peg, Flip Fault
8 Sparse Grassy B 124 m 0− 9◦ 6:55 2 0 s - Summit

TABLE I: Eight outdoor hill climbing behavior trials including 42 successfully avoided obstacles over almost half a kilometer

of climbing with only 5 faults.

# Wall Rise Run Landing Landing Size Flights Stairs Time Scans Behavior Faults Robot Faults

1 - 15.3cm 28.0cm Straight 189x150cm 2 11 2:23 2 - 1 IMU
2 - 15.3cm 28.0cm Straight 327x150cm 2 11 2:55 3 - -
3 - 17.4cm 27.9cm Mixed 494x321cm 2 21 14:29 17 2 Cliff 1 LIDAR, 1 Leg
4 - 18.2cm 26.3cm U-Left 486x222cm 7 60 32:53 30 - 1 LIDAR

5 Glass 17.4cm 29.6cm Straight 192x143cm 2 27 6:48 7 1 Stair 1 Reset
6 Glass 16.7cm 26.9cm Mixed 256x277cm 3 25 23:27 24 2 Cliff, 1 Tran -
7 Glass 16.2cm 28.5cm U-Left 471x252cm 10 111 1:05:19 67 1 Stair, 1 Wall 1 Leg
8 Glass 17.3cm 27.2cm U-Left 349x156cm 10 112 40:49 42 2 Tran, 1 Cliff, 1 Wall 2 Legs
9 Mesh 17.3cm 27.2cm Mixed 293x137cm 11 112 1:26:59 89 8 Various 7 Various
10 Boxy 17.5cm 26.0cm U-Left 228x122cm 12 181 1:11:41 71 2 Stair, 1 Tran 1 Leg

TABLE II: Ten indoor stairwell climbing behavior trials covering 671 stairs in 61 flights with a total of 23 behavioral problems.

power regulator issue scheduled for correction in the next X-

RHex hardware update. Additionally, there were several sensor

faults, where either the IMU or LIDAR would stop responding

due to the regulator issue or a hardware, firmware, or driver

problem. Finally, there were 3 faults where it appeared that

some network corruption caused the robot to miss a command

(such as stop walking) and led to a crash of some sort.

Overall the behavior was able to climb a total of 671 stairs

in 61 flights while encountering only 23 behavioral faults in

almost 6 hours of testing. In almost every stairwell, there were

many other incidents that could be considered faults (such as

a leg hitting a wall, open loop walking leaving the robot at

the wrong angle, false-positive on cliff detection, etc) but the

robust preflexes and reactive behaviors prevented these from

requiring a human intervention.

V. CONCLUSIONS AND FUTURE WORK

We have presented a rudimentary form of guarded au-

tonomous locomotion whose empirically demonstrated robust-

ness in unstructured natural and synthetic environments rests

upon the underlying motor competencies of the host plat-

form, stitched together with very simple perceptually triggered

switches whose deployment is arranged in a manner idealized

by the formal notion of sequential composition [2]. Although a

formal argument about the correctness of the idealized hybrid

controller placed within the idealized world model lies beyond

the scope of the paper, we have tried to sketch along the way

how we imagine such proofs to be eminently achievable.

In a more practical vein, we are convinced that several

further modest extensions and improvements in the behav-

iors presented here would considerably close the gap to full

autonomy still revealed by the tables, thereby conferring

true applications-worthy utility upon the X-RHex platform.

For example, the stair climbing behavior can be endowed

with descent capability (as in [30] via [31]), as well more

deliberative obstacle avoidance (as in [32]). The hill climbing

behavior could use grade to cue a greater diversity of better

hill climbing gaits [33] in order to climb hills as steep as 45◦.

We are planning on expanding the range of hills and stairs

that the behavior will be tested on, starting back in the Mojave

desert as seen in Figure 7. Our preliminary tests have shown

that the steepest ascent controller of Section III-A.1 works well

even on very rough terrain, and we suspect that the obstacle

avoidance behavior will allow the robot to avoid hitting the

larger rocks and bushes.

Harking back to the initial theme of sensor minimality, we

also suspect that both of these behaviors could be completed

using no exteroceptive sensors at all. Instead the robot would

rely on proprioceptive sensors and use the legs to “feel”

obstacles. For stair climbing, we could use a “virtual contact

sensor” to feel the walls and a “missing ground” sensor as a

cliff detector [29]. For autonomous hill climbing, the gravita-

tional gradient sensor could be replaced with a proprioceptive

(instead of vestibular) sensor [34].

Finally, we conjecture that legs matter: that these same

behavioral notions applied to a simpler platform (such as a

tracked or wheeled robot) would not perform as well, most

notably because the robot would get stuck on obstacles that

the mechanical preflexes allow us to ignore. RHex does not

need nor want perfect sensing and we aim to wring the most

autonomy possible by appeal to the simplest most robust

sensor available. We seek to tell the robot not to hit a rock,

or direct it generally towards the stairs. After that, we hope to



Fig. 7: The X-RHex robot on a rocky desert hill.

let the “mechanical intelligence” take over the details.
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